
Rust — A Systems Programming
Language

Blazingly Fast, No Segfaults And Guaranteed
Thread Safety

Hauptseminar
Technische Universität Dresden
Fakultät Informatik
Lehrstuhl für Betriebssysteme

Sebastian Humenda, 16th August 2016

Contents

1. Introduction 3

2. Memory Safety 4
2.1. Ownership . 4
2.2. Borrowing . 5
2.3. Further Measures . 6
2.4. Unsafe Regions . 7

3. Thread Safety 8
3.1. Channel-based Communication . 9
3.2. Shared Sections . 9

4. Performance 11

5. Applications 11
5.1. GPU Programming . 11
5.2. Servo . 12
5.3. Redox . 13

A. Further Reading 13
A.1. Type Inference . 13
A.2. Foreign Function Interface . 14

2

1. Introduction

Rust is a systems programming language developed at Mozilla Research and aims at
being reliable, memory safe, fast and data race free. It provides high-level abstractions
while allowing for tight control over resources as i.e. memory management for systems
programming (Matsakis and Klock 2014; The Rust Developers 2016b). The following
section will give a rough overview over the most important features of Rust which are
necessary to understand the subsequent sections.

Rust is a statically typed language offering type inference. This means that the compiler
can infer the type in most of the situations by the surrounding expressions and state-
ments, therefore taking some of the typing burden introduced by static typing from the
programmer.1

A novel ownership and borrowing model is introduced as well (see 2.1 on the next page),
allowing static safety guarantees and compile-time memory management, eleminating the
need for garbage collection (Reed 2015; The Rust Developers 2016b). The system was
inspired by cyclones region-based memory management (The Rust Developers 2016b).
Rust calls regions life times and they are used by the compiler to track an object and
issue its delocation statically (Reed 2015).

Some of the features in Rust were inspired by research done on Sing Sharp, a program-
ming language developed and used in a research project with the name Singularity. In
this project, an operating system was built which isolated software processes solely by
the type system, so in the end by the compiler. Some of the ideas can be found in Rusts
communication channels and its strict type system (Hunt and Larus 2007). Singular-
ity OS relies for resource management and other security-related tasks on the isolation
provided by the compiler. But while Sing Sharp enforced some of its safety guarantees
using a runtime and a garbage collector,2 Rust relies soley on static code analysis within
the compiler.

Rust offers zero-cost abstractions using traits. Traits are roughly similar to an (Java)
interface, offering a type-generic implementation which gets transformed into a type-
concrete implementation during compilation (The Rust Developers 2016b, chap. 4.22).
This way abstract specifications can still be inlined and hence obtain good performance.
Furthermore Rust offers dynamic dispatch to allow for polymorphism, giving the pro-
grammer the choice when to trade off performance against flexibility (The Rust De-
velopers 2016b, chap. 4.19, 4.22).

Macros in Rust are substantially different from macros in C. They work on the syntax
tree and are hence not prone to substitution issues. They can be used for static code
generation, since they integrate nicely with the strict type system. In addition to the
built-in macros, the programmer can easily define his/her own macros. Examples for

1Some more explanation and examples are given on page 13.
2Sing Sharp does not allow for fine-graned control of the hardware and it was not designed primarely

for memory safety. All memory safety provided are state-of-the-art runtime features.

3

built-in macros are panic to stop the execution of a thread or println to print to standard
output3 (Anderson et al. 2015, p. 4; The Rust Developers 2016b).

2. Memory Safety

Rust enforces an ownership and borrowing model for memory management, which is de-
signed to prevent typical memory safety issues like memory leaks, use after free, dangling
pointers and use of uninitialized pointers/references. These properties are all enforced
solely through the type system. Since this is enforced statically, there is no execution
overhead because of these safety properties. (The Rust Developers 2016b, chap. 4.8).4

To enable the compiler to check statically for memory safety, two invariants have to hold
(Reed 2015):

1. There is exactly one unique owner of an object, responsible for delocation.
2. Memory is never aliased and mutable at the same time.

The implications of these two invariants are explained in the subsequent sections.

2.1. Ownership

Every variable binding5 has exactly one owner. Therefore values cannot be aliased. If a
binding (or its content) is assigned to a second binding, the value is moved.� �

1 fn main() {
2 let v = vec![0; 42]; // init. vector6

3 let w = v; // valid
4 println!("{}", v[0]); // invalid, use of moved value
5 main.rs:4:19: 4:20 error: use of moved value: `v` [E0382]
6 }� �

Figure 1: The contents of the vector (R-Value) can only be owned by one binding in one
scope

3Macros allow the programmer to make transformations on the syntax tree of the parsed Rust source.
This way, functionality outside of Rusts normal syntax can be implemented. println transforms a
list of arguments with variable length into a fixed-length print call.

4An exception are out-of-bounds checks which are inserted before vector accesses. These are however
optimized away if possible and can be even bypassed with unsafe functions (The Rust Developers
2016a).

5Variable bindings bind a name to a value. There are subtle differences to ”Variables”, not discussed
here (The Rust Developers 2016b, chap. 4.1).

6As a shorthand, the standard library provides a macro to initialize vectors more easily. The shown
syntax initializes the vector with 42 0’s.

4

� �
1 fn length(w: Vec<i32>) -> i32 {
2 vec.len()
3 }
4 fn main {
5 let v = vec![6, 5, 4, 3, 2, 1]; // v ownes values
6 let len = length(v) // w in length is owner
7 } ↑ value of v lost� �

Figure 2: example of moved ownership and freed object

@*)

Initializing an object defines an owner, as can be seen in figure 1 on the preceding
page, where a vector is initialized. Line 2 however does not reassign the value of v to
w, but moves the value to w, transfering the ownership. That leaves v as ”empty”.
Consequently the compilation failes on line 3, because of the invariant only one owner,
exactly one binding can own and access a value.

Figure 2 sketches the transferal of ownership to another scope (function). The vector
v is initialized with a few integers and then passed to the length() function. length()
function has a parameter w which now owns the value of v. The function signature
shows that a vector of i327 is taken as input argument. The argument declaration is
followed by a type and the return value.
When length() returns, the binding w falls out of scope. Since w was owning the values
and length() was owning w, this will trigger a free operation on the value of w.

All free operations in Rust are automatically inserted by the compiler and applied ac-
cording to the ownership/borrowing model. The user can implement custom delocation
code to i.e. free allocated resources8 (Matsakis and Klock 2014; The Rust Developers
2016b, chap. 4.1).

2.2. Borrowing

Even though the ownership model is powerful and allows for tracking of each and every
binding and hence allows deterministic and guaranteed frees of resources, it is not con-
venient when passing ownership into and out of a scope again. To ease this, a value of
a binding can be borrowed, so that only a a reference to the object is passed. While a
borrow takes place, the owner of the value is not able to access the value, but control to it
will be handed back when the borrow goes out of the foreign scope. The borrow checker
enables safe aliasing (Reed 2015) and can be imagined as a static reference count within

7All primitive types (float, int, unsized, int, …) have an explicit size in Rust which does not vary across
platforms (The Rust Developers 2016b, chap. 4.3).

8To implement custom delocation / free operations for types, the programmer needs to implement the
trait drop (The Rust Developers 2016b, chap. , 4.19). Traits are not discussed within this work.

5

the compiler. Borrowed references have to be temporary, otherwise memory safety could
not be guaranteed (Reed 2015, p. 3).

A borrow can be either mutable or immutable. To guarantee that no dangling pointers
can occur, there may be either only one mutable reference or one or more immut-
able references (The Rust Developers 2016b, chap. 4.9; Matsakis and Klock 2014; Reed
2015).9

Figure 3 shows a better implementation of length(), which takes the vector v as a refer-
ence and therefore allows the owner to use the object after the function has returned.� �

1 fn length(w: &Vec<i32>) -> i32 {
2 vec.len()
3 }
4 fn main {
5 let v = vec![6, 5, 4, 3, 2, 1]; // v ownes values
6 let len = length(v) // v is borrowed
7 println!("length: {}, first element: {}", len, v[0]);
8 }� �

Figure 3: example for an immutable reference

2.3. Further Measures

The ownership and borrowing model of Rust is an extended version of RAII as known
from c++. Objects with just an owner are comparable to an unique_ptr in C++ and
immutable references to a shared_ptr. While it is possible to achieve memory safety
within C++, Rust enforces these properties with its type system without exception
(Lippman, Lajoie, and Moo 2013, chap. 12.1; The Rust Developers 2016b, chap. 4.8–4.10;
Reed 2015).

With the introduced measures, bugs as use after free, dangling pointers, null pointers
and memory leaks cannot occur. But there is still the possibility of buffer overflows. To
prevent these, Rust inserts bound checks. Whenever the compiler can detect that the
bounds are not going to be violated, the bound checks are optimized away. If performance
is critical and random access is required, the bound checks can also be circumvented in
an unsafe way (see 2.4 on the next page). Last but not least, Rust has extensive and
optimized support for iterators which can also help to get around bound checks (The
Rust Developers 2016b, chap. 4.5, 4.7).

To avoid dereferencing of null pointers or access to invalid data, Rust offers a type called
Option<T>, which contains either a value or None. This way, the programmer is forced

9In the referenced paper, the authors give an explanation while aliasing and mutability doesn’t work
at the same time.

6

� �
1 let x = Some(20); // init Option<i32>
2 let temperature = x.expect("temperature is mandatory");
3

4 let pointer = Some(Box::new(9000));
5 let money = match pointer {
6 Some(ref a) => *a // derefence a
7 None => 0 // default
8 }
9 � �

Figure 4: usage of option to handle errors and prevent access of null values

to explicitly check each value and avoids null values being propagated. Using the value
later on is called ”unwrapping”. Through this explicit and enforced check for null, no
uninitialized data can be read or used. There is also a Result<T> which is similar to an
option, but wraps either a value or an error.

In figure 4 an Option is unwrapped using both pattern matching and functions provided
by the type Option<T> (The Rust Developers 2016b, chap. 4.18). In line 1 an Option is
initialized10 and its value is assigned. The type Option provides several functions to use
the contained value, one being expect, which panics with the given message if no value
is contained in the option. There are other functions to use default values or execute a
closure instead (The Rust Developers 2016a).

The second example shows a pointer represented by the Box type. Pointers are imple-
mented as an optional (Option<T>) type in Rust. Therefore null pointer do not exist,
since Box<T> has to be checked for a value and cannot be simply dereferenced.
In line 5 a match is used to determine whether the pointer is valid or not. Match is an
expression similar to a switch statement, but more powerful, since each case is evaluated
against an expression. It is also checked for exhaustiveness.11 Each case can have a
nested structure, it just needs to return a value to be used in the right-hand side of the
case block. The first case therefore is executed, if the Option contains something and
that something is a reference, which we call ’a’. ’a’ is dereferenced on the right-hand side,
which is safe. The second case is a simplistic error-handling case (The Rust Developers
2016b, chap. 4.14).

2.4. Unsafe Regions

Some data types and algorithms cannot be expressed by the constraints enforced by the
type system. With unsafe, the programmer can violate some of the rules temporarily.
The programmer can hide these few unsafe regions behind a safe facade.
10Options are enum typed and consist of the inner types Some and None.
11The compiler will try to figure out whether all possible cases have been covered, i.e. None and Some,

all numbers from a range, etc.

7

In unsafe code, the following things are possible:

1. Access or update a static mutable variable.12

2. Dereference a raw pointer.
3. Call unsafe functions.

The 3rd item is the most powerful ability, because it allows to call arbitrari code, in-
cluding foreign code from other programming languages which cannot be checked for
the strong safety guarnatees (The Rust Developers 2016b, chap. 4.36). It also allows
the implementation of higher-level, generic and safe data types out of partly unsafe
components (The Rust Developers 2016b, chap. 4.36).

To make a certain region of code unsafe, the unsafe keyword can be used. If a function
or trait is prefixed with unsafe, this function/trait can only be used within an unsafe
context.
If a block, i.e. unsafe { ... } is annotated with unsafe, the programmer asserts that
after leaving the block, the compiler will find everything in a consistent state and that
all the strict properties of Rust hold.

Examples:� �
1 unsafe function foo() { ... }
2 unsafe { // init "raw" pointer
3 let x = 5;
4 let raw = &x as *const i32;
5 *raw; // not guaranteed to be valid, although it is here
6 }� �

Rust also provides a Foreign Function Interface, see A.2 on page 14 which makes it
possible to call code from other languages. This is considered unsafe from the compiler’s
perspective„ because the compiler cannot guarantee its safety properties for these calls.

3. Thread Safety

Concurrency has gained a lot of attention in hard- and software design and it remains
a challenging task to develop scalable, maintainable and (memory) safe concurrent soft-
ware. Rust brings the same memory safety guarantees into concurrent programs while
preserving the freedom of the programmer to write highly scalable applications. Rusts
type system is able to reason about concurrent code at compile time. It is able to pre-
vent data raises, a common and difficult source of errors. All concurrency features are
implemented in the standard library, so that they can be swapped by the programmer,
if need be.

12static variables are global variables.

8

Certain algorithms cannot be expressed with Rusts safety guarantees and are yet safe.
These can be wrapped with virtually no overhead in a safe layer, only requiring a few
lines of unsafe code (Anderson et al. 2015).

3.1. Channel-based Communication

Using channels between processes and threads is the easiest and most scalable way of
writing concurrent programs. The key benefit is that no data races can occur, because
either one thread has a copy of a particular datum or it does not. This also can be a
clear advantage for scalability, because it prevents dependencies.

Rusts channels are inspired by Singularity (Hunt and Larus 2007). In Singularity, pro-
cesses are isolated by software mechanisms, not by hardware. Singularity comes with a
programming language Sing Sharp, which is strongly typed and enforces security with
its type system. Channels are contract based and are also strongly typed (Matsakis and
Klock 2014; The Rust Developers 2016b).

Channels in Rust transfer ownership. Consequently only objects can be send which can
transfer ownership which is indicated through implementing a special trait called Send.
It is appropriate to implement this trait for a custom data type with self-contained
state. It is however not appropriate to call it for an object holding a resource, where the
ownership cannot be transfered. Another case is an object exposed through the FFI.
The compiler will enforce this policy.

Another special trait is the Sync trait. It tells the compiler that this type can be safely
used by multiple threads (read-only) without introducing memory unsafety. Simple data
types are automatically Sync and every data type only made up of primitive types has
this property as well.

3.2. Shared Sections

It can be necessary to share a larger data structure or to have concurrent access, in
which case a shared section is more appropriate than channel-based communication.

The standard library offers wrapper types implementing Send and Sync, which require
the same for their wrapped values. For read-only data sharing, the type Arc<T>13 allows
sharing across threads. It provides a clone() function to get a copy of another reference,
so that each thread holds its own borrowed copy to the value owned by the instance of
Arc<T>.

If data has to be shared in a writable manner, it has to be wrapped in a Mutex type.
This type will enforce a lock when the data is going to be accessed and will unlock the
data again when the critical section is left. This way, no data races can occur, because

13Arc stands for atomically reference counted.

9

data can only be shared with a mutex in a writable manner and all other access is
prevented, because the Mutex owns the wrapped value (it is moved into it when the
mutex is initialized).� �

1 use std::sync::{Arc, Mutex};
2 use std::thread;
3

4 fn main() {
5 let numbers: Vec<_> = (0..100).collect();
6 let shared = Arc::new(Mutex::new(numbers));
7 let mut children = Vec::new();
8

9 for i in 0.100 {
10 let child_numbers = shared.clone();
11 children.push(thread::spawn(move || {
12 let local = &mut child_numbers.lock().unwrap();
13 local[i] = i * i;
14 })); ↑ unlocked when scope left
15 }
16 }� �

Figure 5: parallel writes on a variable synchronized by a mutex

In figure 5, a vector is initialized and wrapped in a Arc<Mutex<T>>. The vector on line 5
is initialized using a range14 and converted into a vector using collect. Afterwards the
numbers are wrapped in a shareable mutex type. Please note that the binding defined
on line 5 is not useable afterwards anymore, since the values have been moved along
with their ownership.
The mutable vector initialized on line 7 is used for the thread handles and its type
doesn’t need to be specified, since the compiler can infer it statically from the call to
push further down.

On line 11, a new thread is started with a closure as argument. This closure contains
the code to be executed in the thread.15 The copy of the reference made on line 10 is
used on line 12 to acquire the lock. The result is then unwrapped and assigned to a
local binding.16 The &mut in front of the mutex.unlock call tells that we want a mutable
reference, it would be immutable by default.
When the closure is left, the mutex is automatically unlocked. Since another scope can
be introduced solely using {...}, it is possible to have automatically-managed, short
and precise critical sections.

14Rusts ranges are iterators under the hood and lazily evaluated. They are not a container data structure.
15Closures have access to the surrounding state, but the compiler will watch which variables are actually

used.
16Lock returns an option. Doing an unwrap on it will discard all possibility of error handling and directly

returns the value. If the mutex was poisoned, the thread would panic and hence stop execution.

10

4. Performance

Rust is designed to deliver performance comparable to C++ (Anderson et al. 2015).
There are no official benchmarks yet for Rust, but several non-scientific measurements
have been taken. Anderson et al. compared their very slim browser rendering engine
against classical engines against others. This rendering engine is not feature complete
yet, but it is able to outperform Gecko by far which gives a rough idea of Rusts optim-
izability.

The Benchmark Game

The Benchmarkgame is a project to provide a set of implementations for a list of al-
gorithms. Each algorithm is implemented in all languages and execution times, memory
usage and a few other parameters are logged. Execution times are averaged and the
benchmarks are re-run repeatedly with the latest compiler updates. This gives a rough
idea about Rusts speed, but the quality of the implementations is uncertain.17 Below
is an excerpt comparing the performance of Rust against C, taken from the benchmark
game.

System: Platform: quad-core 2.4 GHz Intel Q6600, 4 GB RAM, Ubuntu GNU/Linux
x64

Rust C (GCC)

Algorithm time s mem KiB time s mem KiB
pidigits 1.74 8,104 1.73 1,992

binary-trees 3.78 128,060 3.26 156,840
fannkuch-redux 16.65 20,284 8.97 1,588
spectral-norm 4.01 14,284 1.98 1,868

Project home: http://benchmarksgame.alioth.debian.org

5. Applications

5.1. GPU Programming

Holk et al. experimented with Rust for GPU computations. They claim that nowadays
languages used on GPUs are to low-level to provide programmer-friendly abstractions
offered by modern programming languages.18 This has been adressed by using DSLs

17Although the majority of the benchmarks attest Rust very good performance, a few implementations
are so slow, that even the Java implementation (which includes JVM start up and shut down)
outperforms Rust.

18The whole section is taken from (Holk et al. 2013).

11

compiling i. e. to Cuda, but these are not as expressive as Cuda and are another layer of
indirection.

On the other hand Rust offers zero-cost abstractions and through its usage of LLVM, it
is in theory portable across architectures. LLVM has support for the PTX architecture19

and Holk et al. try to use this backend, disabled by default, to compile code for the GPU.
This way algebraic data types and other abstractions can be used on the GPU.

To execute the code on the GPU, a runtime is required. The OpenCl runtime uses the
PTX format as well and therefore the authors used the OpenCl runtime to execute their
code. Some parts of the compiler were modified, for instance a #[kernel] directive was
introduced to mark kernels and functions and special variables, i. e. to access the global
thread id.

The authors conclude that the performance of their generated code is similar to those
of hand-written OpenCl kernels. They give some insights into the performance of some
higher-level features, i. e. that most closures are simply inlined by the compiler and are
hence no performance penalty.

The paper shows that Rusts memory safety model can be applied to the GPU and
demands for more research into zero-cost abstractions for highly parallel computation.

5.2. Servo

Servo was started as a long-term replacement technology for the browser rendering engine
Gecko. Gecko is implemented in C++ and hence offers tight control of resources and
offers hence good sequential speed. On mobile devices, processors are less powerful and
the trend is to do more in parallel. Because Rust has a focus on thread-safety and low-
level control, the project was started to bring better performance, better power usage
and more safety to the browser. An informal analysis done by Anderson et al. showed
that roughly 50 % of the errors were use after free, out of range access and integer
overflow.20

According to the authors, memory safety will however not be the key to its success, it
must be at least as fast if not faster as existing rendering engines.
The authors highlight several features of the language, enabling for more speed as static
dispatch by polymorphism by default, pattern matching for static dispatch (no spe-
cialized optimization necessary), polymorphism gets applied to one specific case, hence
monomorphised and code is generated for the concrete type (as also done in C++)
(Anderson et al. 2015, p. 2 ff.).

19This is an intermediate ISA used by NVIDIA graphics cards.
20Integer overflow checks are only prevented through dynamic checks inserted by the compiler. Release

builds turn off this feature to gain performance, developers however catch this type of error (The
Rust Developers 2016b).

12

The implementation of Servo also faces some difficulties. For instance can scripts modify
the DOM while it is build.21

Some data structures from the Rust standard library are not suitable for Servo’s needs.
That doesn’t mean that they are poorly implemented, but rather that Servo’s needs are
very specific. For example offer doubly-linked lists in certain situations best performance,
but since multiple mutable pointers to one object are necessary, this is impossible to
implement in Rust by default.22 There is a work-stealing implementation written in
partly unsafe Rust for Servo as well, an algorithm which cannot be implemented with
the tight safety guarantees.

Language interoperability is an issue for two cases as well: Rust cannot call into C varargs
(which can be mitigated using a C wrapper) and cannot call into C++ code natively.
The latter is a performance issue, because all the C++ code needs to be accessed using
the FFI as well. However it would be possible to bring Rust’s and C++’s code together,
because both can be compiled to LLVM’s intermediate language (Anderson et al. 2015,
p. 3ff.)).

Servo uses channels for nearly all of its communication. This way, each thread has its
own copy of the data, no synchronization or locking is required. Only for the flow tree
data structure,23 multiple readers need to have access in parallel and for this scenario a
shared region is faster.

5.3. Redox

Redox OS is a modern unix-alike operating system written entirely in Rust. It is based
on a microkernel and is already able to boot a graphical window manager. There are no
publications yet, but a lot of material and information, as well as an ISO image to try
out. the project can be found at:

http://www.redox-os.org

A. Further Reading

A.1. Type Inference

Type inference is a modern capability of compilers and means that the compiler can
infer the type of an expression out of the types used within. This does not mean that

21Modern browsers even do speculaitive token scanning in scripts to increase performance (Anderson
et al. 2015, p. 2).

22For a doubly-linked list, all pointer construction and modification has to be wrapped inside an unsafe
block. A thin unsafe layer can therefore make the operations on the list safe.

23The flow tree contains styling and display information from the page being displayed and is hence a
frequently used, tab-globally accessed data structure.

13

the types are dynamic, they are known at compile time, but the compiler is able to
reason about the type automatically. It will abort as soon as a type cannot be inferred,
because of an ambiguous expression. Consider the following, where the left and right
cell compile to the same code:

Explicite Type Inferred Type
let x: i32 = 9; let x = 9;
let y: Bar = Bar::new(); let y = Bar::new();

The compiler can even infer the type of i.e. a generic (here Vec<T>) by examining the
later usage of the binding:� �

1 // type infered through the push statements:
2 let z = Vec::new();
3 z.push(9); // is Vec<i32>
4 z.push(10);
5 // invalid, does not compile:
6 // vec.push("z");� �

More information: The Rust Developers 2016b, chap. 4.1.

A.2. Foreign Function Interface

The Foreign Function Interface FFI allows Rust to call into binary code from other
languages, specifically C. Foreign code is considered unsafe and hence are all calls to
foreign code unsafe. When a library is going to be used within Rust, the library is
normally wrapped within a thin layer of Rust code to abstract from the underlying
unsafety.

More can be found in The Rust Developers 2016b, chapter 5.9. There is also a book
dedicated to writing unsafe Rust code, located at:

https://doc.rust-lang.org/nomicon/

14

References

Anderson, Brian et al.: “Experience Report: Developing the Servo Web Browser Engine
using Rust”. In: CoRR abs/1505.07383 (2015).
Web: http://arxiv.org/abs/1505.07383.

Holk, Eric et al.: “GPU Programming in Rust. Implementing High-Level Abstractions
in a Systems-Level Language”. In: Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing Workshops and PhD Forum. IP-
DPSW ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 315–324. doi:
10.1109/IPDPSW.2013.173.
Web: http://dx.doi.org/10.1109/IPDPSW.2013.173.

Hunt, Galen C. and James R. Larus: “Singularity: Rethinking the Software Stack”. In:
SIGOPS Oper. Syst. Rev. 41.2 (Apr. 2007), pp. 37–49. issn: 0163-5980. doi: 10.1145/
1243418.1243424.
Web: http://doi.acm.org/10.1145/1243418.1243424.

Köster, Johannes: “Rust-Bio - a fast and safe bioinformatics library”. In: CoRR
abs/1509.02796 (2015).
Web: http://arxiv.org/abs/1509.02796.

Lippman, Stanley B., Josée Lajoie, and Barbara E. Moo: C++ Primer (4th Edition).
Addison-Wesley Professional, 2013.

Matsakis, Nicholas D. and Felix S. Klock II: “The Rust Language”. In: Ada Lett. 34.3
(Oct. 2014), pp. 103–104. issn: 1094-3641.
Web: http://doi.acm.org/10.1145/2692956.2663188.

Reed, Eric: “Patina. A Formalization of the Rust Programming Language”. In: (Feb.
2015).

Rust by Example. Apr. 9, 2016.
Web: http://rustbyexample.com.

The Rust Developers: Standard Library API Reference. Aug. 2016.
Web: https://doc.rust-lang.org/1.10.0/std.

– The Rust Language. No Starch (unpublished), Aug. 2016.
Web: https://doc.rust-lang.org/1.10.0/book.

15

