
UNIX On Microkernels

An Overview Over Past And Current
Developments

Technische Universität Dresden
Fakultät Informatik
Lehrstuhl für Betriebssysteme

Sebastian Humenda, 21/09/2016

Contents

0 License 3

1 Introduction 4

2 Mach 4
2.1 Kernel Abstractions . 4
2.2 Tasks And Threads . 5
2.3 Inter-Process Communication . 6
2.4 UNIX Interface . 7

3 QNX 7
3.1 Inter-Process Communication . 7
3.2 Resource Managers . 8
3.3 File System And Device Management . 8
3.4 Networking . 9

4 Minix 9
4.1 Inter-Process Communication . 10
4.2 Architecture . 10
4.3 Failure Detection And Recovery . 11

5 GNU Hurd 12
5.1 Process Handling . 12
5.2 File System . 13
5.3 Reusing Drivers . 13

6 Conclusion 14

2

0 License

This work is licensed under the Attribution-ShareAlike 4.0 (CC BY-SA 4.0). The legally
binding license agreement can be found on https://creativecommons.org/licenses/
by-sa/4.0/legalcode.

In summary, you are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms. Under
the following terms:

Attribution: You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use.

ShareAlike: If you remix, transform, or build upon the material, you must distribute
your contributions under the same license as the original. No additional restric-
tions: You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

Notices:

• You do not have to comply with the license for elements of the material in the public
domain or where your use is permitted by an applicable exception or limitation.

• No warranties are given. The license may not give you all of the permissions ne-
cessary for your intended use. For example, other rights such as publicity, privacy,
or moral rights may limit how you use the material.

• This license summary is not legally binding, only the referenced full license text
may be used.

3

1 Introduction

Unix was originally developed by Bell Laboratories and through the history, the trade-
mark was often sold. This resulted in a variety of Unix implementations. Unix has been
proprietary in the beginning, but inspired through the early days, where source code
was freely available and also through the free software movement, the development of
free and open source versions started [9].

Many unix concepts have been influential for today’s operating system design. For
instance, a hierarchical file system, a hierarchical process structure and pipes can be
found on most systems today [6].

Unix was developed to be more modular than its predecessors. Programs should be
simplistic and do exactly one thing. Through the introduction of pipes, it was possible
to concatenate the output of one program as input of another, therefore solving complex
tasks without requiring specialized programs. [9].

The kernel design of Unix systems, however, is often monolithic, for instance the kernels
from the BSD family, Solaris or HPUX. It has been shown that microkernels offer bet-
ter extensibility properties, ease the maintainability of the system and allow for better
isolation of critical components [1, 4].

This work will give an overview over approaches and attempts to implement a Unix
system on top of a microkernel. It starts with introducing Mach, the first microkernel
with the intent to provide a next-generation modularized Unix system. Afterwards the
QNX system is introduced, a commercial Unix system primarily deployed in embedded
systems. The next section discusses Minix, a reliable and fault-tolerant operating system.
Finally, the Hurd project with its Unix implementation on top of Mach is discussed.

2 Mach

Mach is a microkernel whose development started in the second half of the 1980s. With
the increase in complexity of the systems back then, a more modular OS designed prom-
ised to help to adapt the system quicker to new developments. It intended to bring
the modular Unix philosophy to the kernel, which consequently meant developing a
microkernel [1].

2.1 Kernel Abstractions

The main abstractions that Mach provides are:

Task This is the smallest unit of resource allocation and provides the environment for
execution. This includes virtual memory, protected access to system resources,
etc.

4

Thread Threads provide the smallest unit of CPU utilisation and feature an independent
program counter from other threads. They share access to resources within a task.1

Port This is a kernel-protected and queued communication channel endpoint for com-
munication between tasks. It offers primitives like send and receive. This is also
called inter-process communication (IPC).

Message A message is a typed collection of data used for communication between
threads and may contain pointers or typed capabilities.

Capability Instead of maintaining a list of allowed actions on an object, the kernel can
hand out a capability which enables the access to a certain kernel object.

[1, p. 3]

Mach is designed to provide a small set of primitive functions, which should enable
building more complex systems. The primitives offered by Mach make it possible to
represent services as objects, to which an entity can gain access by receiving a capability.
The functionality of a system is determined by its servers,2 not its kernel. Operations
on objects3 are done by sending messages to them.

Virtual Memory The handling of virtual memory is directly built into the Mach kernel.
According to the authors, this was done mainly due to performance reasons. Virtual
memory can be allocated/deallocated on a per-task basis, which in turn can set protec-
tion or inheritance attributes on the granted memory regions. A task may specify that
a certain region is inherited to a child task and can do so either read-only, copied or not
at all. Copying is done using copy-on-write to speed up the process. Inheritance is the
only way of sharing memory regions between tasks in Mach [1, pp. 4,6].
Whenever a memory region is allocated, the requesting task gets a capability back which
allows the usage of the memory. This capability can be passed to another task, which
transfers the memory region. Even the whole address space of a task can be transferred
this way.

2.2 Tasks And Threads

The original task abstraction in Unix was a single-threaded holder of resources and the
smallest unit for scheduling. Blocking system calls suspended the execution, therefore

1Accetta et al. explain the abstraction of threads as a novel concept. It is common in today’s monolithic
and microkernel systems and it is not clear whether they introduced it. According to their description
it was not found in Unix back then, which only supported tasks.

2Throughout this paper, server refers to a program, running in user space and serving a particular
functionality and interacting with the environment through suitable communication mechanisms.

3Objects are a general term to address anything which can be altered through a command (message)
send via inter-process communication. This can be something within the kernel, but also within a
user service.

5

eliminating the possibility of doing other work within the same task, while waiting for
the system call to complete. The thread concept introduces independent execution units
sharing all resources. This way, a multiprocessor can be used more efficiently, because
multiple concurrent threads can run within a task and can be scheduled to run on dif-
ferent processors/cores in parallel.

Tasks in Mach are tree-structured and therefore have a parent-children relationship.

2.3 Inter-Process Communication

Ports Mach is designed for transparent extensibility of the kernel. Therefore it uses
inter-process communication from and to ports. Sending to a port can only be done using
a capability, serving as an authentication and also a way to locate a port. Capabilities for
ports are created whenever a port is created. Ports are handed out to a task to provide a
given service, communication takes place with messages and the kernel guarantees only
that messages are sent and received. Since messages are buffered within the kernel, the
sender will get blocked eventually, if the receiver is slower than the sender. It also means
that data is copied from and to kernel space, so for each message twice. An alternate
approach can be seen in section 3 on the following page.

Messages Messages have a fixed-length header, but a collection of data with variable
size. They can contain typed pointers and capabilities.
It is possible to send messages synchronously and asynchronously. Synchronous receivers
are blocked until a message arrives, asynchronous receivers register a signal handler which
gets called whenever a message arrives. A message contains enough information to re-
encode it for different machine types, when sent over a network.
An IPC interface is defined using a specialized definition language called Matchmaker.
It compiles the definitions into RPC stubs. Interfaces generated with Matchmaker also
do dynamic type checking on messages.

RPC over network Through the loosely coupled design of servers and user tasks,
it is easy to add support for a network of processors or multiprocessors, because the
coordination is already abstracted into communication between ports. Port endpoints
may be a thread in the same task, in a different task or on a different processor. For the
sender of a message, it is impossible to tell whether the message sent to a port is sent to
a server on the same machine or over the network to another machine which will answer
this request, because the location of a port is transparent to the sender.
Mach itself does not provide networking capabilities, but it is possible to redirect IPC
using a networking server. The network server will take care of marshalling the message
into the network protocol, map each port to a network address and send the message to
that address. The other machine will then receive the package, map to the appropriate
port and will send the unmarshalled message.

6

2.4 UNIX Interface

The Mach developers tried to provide a Unix system which was similar to BSD 4.3. This
included e. g. a virtual file system and a debugger. Most of the services are implemented
as user-level tasks. For instance, the virtual file system is runs in user space as a separate
task and allows arbitrary servers to be registered as file system drivers. This is not limited
to local file system implementations; network file systems can be used transparently as
well.

Debugging of the kernel is possible with the built-in kernel debugger. However, since
most of the system components are user space programs, debugging is far easier than in
traditional Unix.

3 QNX

QNX was introduced around 1982 and had the main goal to provide the maximum
performance of the underlying hardware to applications running on top of it. It is
built on top of a real-time capable microkernel and has optional user processes offering
Unix/POSIX services. All system services are optional to scale the system to tiny and
big systems. The microkernel and the whole system architecture was written to not only
match the performance of traditional monolithic systems, but outperform them.

The kernel implements exactly four services: inter-process communication, low-level
network communication, process scheduling and interrupt dispatching. When the paper
was published, only 14 system calls were implemented, which was enough to build a
POSIX-compliant system on top. Because of its small size, the authors claimed that it
would fit into the L1 cache of CPUs back then.

The process and thread scheduling contained in the kernel is POSIX-compatible. User-
level resource managers can alter the policy of the scheduler to adapt it to the system
needs. The scheduler is fully preemptive and designed with the goal that nothing will
degrade the real-time property of the scheduling.

3.1 Inter-Process Communication

IPC in QNX is blocking, so that if one end is not ready, the other end (be it sending or
receiving), is blocked (this happens on a per-thread basis). Messages are always copied
from the sender to the receiver and don’t take the indirection over the kernel; this saves
a copy operation. The IPC implementation is very efficient, since send only takes place
when both sides are ready and the number of context switches is minimized. If buf-
fering of IPC is required, it can be implemented by a user-level service, interposing the
communication.

7

Messages are tagged with a priority. If a server receives a message and reacts to it, it
does not execute with its own priority, but with that one of the sending process. This
prevents priority inversions, because lower-priority processes cannot keep the server busy
and hence prevent high-priority senders from doing its job.

Messages in QNX can be either contiguous or fragmented. Fragmented messages are
made up of a header (MX table) with the addresses of the different parts of the messages
and their length. This way the message can be copied from different regions of the
address space or they can be even remapped to the receivers address space. This avoids
expensive copy operations for contiguous messages.

3.2 Resource Managers

All application-level OS interfaces are implemented by services. Resource managers
provide a name space in which they control their resources and abstract from the man-
agement of these. A resource can be a file system or the set of all running processes.

A special kind of service is Proc , the first and only mandatory resource manager which
acts as a process manager for all processes. It provides services as process creation,
process accounting and memory allocation. It also manages the global name space,
which is identical to an empty file system after boot. The name space is not limited
to the local machine and many Proc instances can form a global name space, spanning
multiple machines. Proc offers an API to set up resource managers below its own
namespace and is able to transfer authority to a child resource manager.
Name spaces are strictly separated, only the name space of Proc is global, since it is the
parent of all others. Name spaces can be used to implement independent subsystems and
errors only propagate in the subsystem or to the resource manager of this subsystem.

Since all other services are optional, it is possible to build a very minimalistic OS with
no file system which directly operates on RAM.

3.3 File System And Device Management

The virtual file system is provided by the Fsys service, which is also a resource manager.
It gets the authority to manage the ”/” root node from Proc and offers a Unix-alike file
system tree.

According to Hildebrand, Fsys also contains a file system implementation, mixing virtual
file system functionality and a file system driver. It is possible to add further nested
resource managers to implement different file systems.

An open call for a file is sent to the Proc manager which then determines that a resource
underneath / is requested and refers the request to Fsys. The requested path is then
matched against its prefix and the match with the longest prefix wins. This can be either
in the file system provided by Fsys, or in a different resource manager.

8

Fsys also supports FS aliasing, which is also known as mounting in Unix. Remote file
systems can be aliased into the local file system hierarchy and are fully transparent for
any application using them.

The dev resource manager manages devices and is a child process of Fsys . It binds itself
to the name space under /dev. It offers the functionality of a device over the file system
API. It can easily add and remove drivers from the dev name space during operation
without a restart. Even dev itself can be removed if it is not required anymore.

Drivers in user space do not run slow, because interrupt handling is built directly into the
kernel and switching to and from the microkernel is faster than in a monolithic system.
The kernel provides a system call to let user space processes register for interrupts with
a handler.

dev allows grouping most of the devices into block and character devices known from
Unix. To further optimize the operation speed of character devices, it is possible to let
the handler from a driver gather characters in a buffer and only invoke the driver, when
a certain limit is reached. This way, the full driver program is only invoked when enough
data for processing is available.

3.4 Networking

Low-level networking is carried out by the kernel. It enables the microkernel to use
remote procedure calls for IPC. The actual network drivers and networking policies are
not contained in the kernel though. The initialization and maintenance of a networking
connection is done by a service called Net. It is a resource manager for network drivers
and the network. All RPC calls to other machines are send by the kernel to Net and
this takes care of calling the appropriate services to redirect the RPC to a different Net
instance which transforms the RPC back into IPC.

4 Minix

Minix is a POSIX-compatible operating system, providing a fault-tolerant Unix envir-
onment running on a microkernel. The goal of Minix is to use the better fault isolation
properties of a microkernel to deliver a more fault-tolerant operating system. It is de-
signed to survive and to recover from failures in drivers and services. The detection and
recovery of faulty components works automatically and transparent to the applications
using them. For this to work, the operating system is split into many small components,
enabling fine-grained control of each component. The design principles have been:

1. simple and effective IPC
2. detach interrupt handling from user-mode drivers
3. separation of policy and mechanisms

9

4. decoupling of servers and drivers through a publish/subscribe model
5. flexible runtime OS configuration

4.1 Inter-Process Communication

According to Herder et al., the kernel only implements the most basic mechanisms,
which cannot be implemented in user space, i. e. interrupt handling, programming of
CPU, MMU, device I/O, scheduling and IPC.

Inter-process communication works synchronous and without memory allocation both
within the kernel and the user space application. This is called rendez-vous: if the
receiver is not awaiting the sender, the sender is blocked, until the receiver becomes
ready. This also works the other way around. Data is always copied from one user
process to another, which saves a copy operation in comparison to Mach (see 2.3 on
page 6). This also eliminates the need for in-kernel allocation of buffers and of filled
buffers. A certain set of notifications can be sent asynchronously to a process; to avoid
resource depletions, all notification are saved in a per-process bitmap.

Whenever an exception happens within a process, the kernel converts it to an IPC
message and sends it to the process manager. PM converts the IPC message into a Unix
signal, which is either send to the process or leads to a termination of the process, if no
handler was registered [4, p. 6].

To implement a capability-based permission system, the Minix kernel maintains several
bitmaps and lists to track permissions of objects throughout the system. These include
reachable IPC destinations, permitted kernel calls, IO ports, IRQ lines and memory
regions [4, p. 9].

4.2 Architecture

The Unix interface and the fault-recovery mechanisms are implemented by a set of pro-
cesses running in user space. Each service and driver is started with the least authority
in order to operate. Normal user processes cannot execute system calls, but must use
the POSIX interface (discussed below) [4, pp. 6, 11].

Two processes run in kernel mode, without being part of the kernel itself. They aide the
kernel and shield it from user space services. They are:

SYS The SYS service provides the interface for user processes, which require low-level
operations. These system calls are validated and checked for permissions and only
then SYS delegates the work to the kernel. It never becomes active itself, but
waits blocked for incoming messages.

10

CLOCK This service interacts with the hardware clock and controls all timers in the
system. It also does the accounting on CPU usage, data which can be used by the
scheduler. It is not reachable from user space directly, but a system call allows
registering an alarm. [4, pp. 6 sq.]

The most basic Unix services are implemented by the process manager PM and the file
system service FS.
PM is responsible for maintaining process relations across the system (process groups or
parent-child relations). It implements the policy for process management, while the ker-
nel provides the primitives for process creation. PM also contains the memory manager
MM, although work is being done to split both. The memory manager uses hardware-
independent segmented memory. This allows for easy sharing of regions across processes
(e. g. text and data segment) and enables easier portability to other platforms. System
processes can be granted special segments as for instance the video segment. The text
segment is read-only and the stack non-executable by default [4, p. 7].

FS implements the Unix file system interface, with system calls such read, write and
open. At the moment, only one file system is supported and it is directly built into the
file system server. When the paper was written, work was in progress to transform the
server into a virtual file system server enabling any file system to be supported.

The data store (DS) provides a global store for dynamic system configuration. It offers
a publish and subscribe model, hence decoupling dependencies between servers. The
subscriber can even subscribe to a pattern matching certain notification types (e. g. all
new disk drivers). For instance, a file system server would subscribe to any disk driver
and whenever such a new driver might be loaded or removed, the information is published
to the registered file system server. A file system thus does not have a reference to the
disk driver, but retrieves its information from the data store.
DS also provides private storage for each server running in the system and if a service
fails, it can easily retrieve this data after its reincarnation. Furthermore, the data store
provides a global naming service, but introduces a single point of failure as well. It is
not apparent from the paper, whether the data store can be restarted without data loss
[4, p. 7].

4.3 Failure Detection And Recovery

The reincarnation server (RS) runs as a parent of all processes. At system boot, all
processes are started as a child of RS, which is also able to start and stop services. To
determine fault-recovery policies, services can be equipped with a policy script, which
regulate the actions on boot and on failure. The policy script may also specify actions
to check whether a process is still alife, for instance by sending a periodic message and
checking the reply [4, p. 6].

Whenever a server or driver crashes, the exception is converted to an IPC message to
the parent by the kernel. Since all drivers and servers are a child of the reincarnation

11

server, it can detect whenever a service ceases to exist and execute the actions defined
in the policy script. For different classes of drivers, different actions can be defined. For
block devices, it is common to reissue the command after a restart, whereas character
device failures are mostly propagated to the user.

Because the data store provides a mechanism to decouple dependencies, components
can be transparently restarted or replaced. The underlying fault model can deal with
transient failures, which are gone after a restart (e. g. aging bugs), but cannot cope with
Byzantine faults. It is also not possible to recover from a crash of the reincarnation
server [4, pp. 9 sq.].

5 GNU Hurd

GNU is the operating system developed by the Free Software Foundation, which aims at
providing an entirely free open source operating system. GNU runs on the Hurd, which
is a set of services on top of the Mach microkernel. When Hurd was started, no free
implementation of Unix was available.4 The focus of the project was to deliver a free
Unix-alike operating system, providing as much freedom to the user as possible. The
developers aimed at making each component of the system replaceable (or interceptable)
by a user without disrupting other users. [7, 3].

The (Mach) kernel only handles tasks, threads, memory and IPC. Everything else is
implemented in user space. Therefore the basic design is very similar to the original,
unmodified Mach [1, 3]. While all processes are optional on a Mach system, a few
processes are required for GNU/Hurd to provide a POSIX interface. These are the
process server, the execution server, the root file system server and the authentication
server. Any interface can be bypassed and Mach interfaces can be used instead. It is
also possible to reimplement them to virtualize the functionality at a higher level.

The Hurd system brings some improvements to the user, which are not present in other
Unix-alike operating systems. For instance, the console server, which provides a console
(shell) session to the user, is able to load fonts dynamically and display e. g. Chinese in
a VGA text mode. It is also possible for every user to swap or extend any service, since
all services can be interposed. This is not present of any Unix today.

5.1 Process Handling

Process handling is done by the process server (proc), the execution server (exec) and the
file system server. The process manager categorizes and manages process information
and provides global host information such as the host name, which are not provided by
Mach directly. It maintains a notion of POSIX sessions and process groups. In theory,

4Free as defined by the free software foundation is the right to copy, modify, redistribute and to use
the software for any purpose.

12

the registration to proc is optional, but a (global) PID is always assigned. Due to
limitations in Mach, it is necessary to run proc as privileged user, since only privileged
users can see all processes [3].

exec performs loading of programs, libraries and also parses the interpreter from scripts
to execute them. It sets up the process environment and initiates the task setup.

The Unix system calls are all carried out by libraries to which an application is linked.
It contacts the appropriate servers using IPC. For example, a fork call in GNU Hurd is
performed by the C library libc. The library would contact the file system server to
check for the binary and to retrieve a handle to it, contact the execution server to set
up the task, obtain a capability to the port representing the task and last but not least
contact proc to register the new process [3].

5.2 File System

Hurd provides a virtual file system to which processes get access by receiving the root
port capability. There is no designated virtual file system server, but the port from the
mounted root file system is the main entry point for applications. All other file systems,
which run in separate processes, are accessed through their port capability, which is
retrieved using a path from the root file system. The program providing a file system
services is called a translator and the process called translation. Every user can register
any translator for any file system, as long as he/she has access to the resource. It will
then run with the user ID, hence with the privileges of the user. Translators are invoked
the first time when a file is accessed at the path at which they are bound to5 and return
a capability to a port with which the communication is performed.

A translator can be a normal file system implementation as e. g. ext3, but is not limited
to it. In fact, it can hide everything behind the file system API.

Hurd ships with a FTP and ISO translator, which any user can use without special
privileges or extensions to the OS infrastructure.6 Drivers can be registered as a trans-
lator too and this is typically done under /dev. The null driver, which can output an
arbitrary number of null bytes, registers itself under /dev/null.

5.3 Reusing Drivers

As already pointed out, drivers are ordinary user processes and hence benefit from easier
recoverability and easier debugging, but they need to be written in the first place. With a
limited amount of developers, reusing drivers is one of the main goals regarding drivers.

5Translators are only started once, so for two open files on an ext4 file system, only one translator is
started.

6Therefore it is easily possible to register a translator under ftp: and then access ftp://host/path,
which would get translated into a series of FTP commands.

13

Rump The Rump kernel is a FreeBSD kernel running in user mode. It provides many
drivers as well as a TCP/IP stack and more. For instance, Hurd is able to play sound
using certain sound cards when using the Rump kernel [7].

DDEKit The Device Driver Environment Kit (DDEKit) is a library, which maps the
interface for drivers found within the 2.6-series of Linux to an outside driver interface to
reuse them on a different host system. To make drivers available on Hurd, the driver is
linked against the DDE library and a bit of glue code is added to turn it into a server
[7].

Missing Hardware Support According to Thibault, hardware support on Hurd is not
extensive yet. USB support is missing, but being worked on. Sound support exists for
a few sound cards and Rump kernel extends the list of supported cards. The AMD-64
architecture is also not yet officially supported, but being worked on. Although hardware
support is limited, the software runs stable and it has been reported that some machines
have not been reinstalled since a decade [7].

6 Conclusion

Since the 1980s, several attempts have been made to modularize the UNIX architecture
by reimplementing all system services and user tools on top of a modular microkernel.
Although there are many benefits, microkernels were not able to replace monolithic
systems. The most popular Unix clone Linux is a monolithic kernel, this is also true for
the BSD Unix systems.

Mac OS X, which builds on top of a hybrid kernel, has brought at least some of the
advantages of a microkernel to modern desktop and mobile phone platforms. It incor-
porates code from Mach and from the FreeBSD kernel. This way, some drivers and
interfaces are built-in and always available, but other mechanisms and features can be
implemented on top of this kernel using IPC mechanisms [8].

QNX is the only fully microkernel-based operating system with a Unix API which is
commercially successful. Several deployments are listed on the website http://qnx.
com.

The Mach microkernel has been very influential. It was adopted for projects like Hurd
or merged into another code base as for Mac Os X.7 Mach’s shortcomings motivated
many researchers to improve the properties of microkernels and its design still is a good
example.

7When the Mac OS X kernel was created, it was not part of Mac OS X. However, this is beyond the
scope of this document.

14

More modern microkernels often do not fully implement the POSIX API and one reason
could be that the POSIX API does not deliver good performance for nowadays systems
with many cores or many processors [2].

References

[1] Mike Accetta et al.: “Mach: A New Kernel Foundation for UNIX Development”. In:
1986, pp. 93–112.

[2] Nils Asmussen et al.: “M3: A Hardware/Operating-System Co-Design to Tame Het-
erogeneous Manycores”. In: SIGOPS Oper. Syst. Rev. 50.2 (Mar. 2016), pp. 189–
203. issn: 0163-5980.
Web: http://doi.acm.org/10.1145/2954680.2872371.

[3] Thomas Bushnell: Towards a New Strategy of OS Design. retrieved 2016-08-16.
Web: http://www.gnu.org/software/hurd/hurd-paper.html.

[4] Jorrit N. Herder et al.: “Reorganizing UNIX for Reliability”. In: Proceedings of
the 11th Asia-Pacific Conference on Advances in Computer Systems Architecture.
ACSAC’06. Shanghai, China: Springer-Verlag, 2006, pp. 81–94. isbn: 3-540-40056-7,
978-3-540-40056-1.
Web: http://dx.doi.org/10.1007/11859802_8.

[5] Dan Hildebrand: “An Architectural Overview of QNX”. In: Proceedings of the Work-
shop on Micro-kernels and Other Kernel Architectures. Berkeley, CA, USA: USENIX
Association, 1992, pp. 113–126. isbn: 1-880446-42-1.
Web: http://dl.acm.org/citation.cfm?id=646405.759105.

[6] Dennis M. Ritchie and Ken Thompson: “The UNIX Time-sharing System”. In: Com-
mun. ACM 17.7 (July 1974), pp. 365–375. issn: 0001-0782. doi: 10.1145/361011.
361061.
Web: http://doi.acm.org/10.1145/361011.361061.

[7] Samuel Thibault: Hurd, Rump kernel, sound, and USB. FOSDEM Conference. Jan.
2016.
Web: https://fosdem.org/2016/schedule/event/microkernels_hurd_rump_
sound_usb/attachments/slides/951/export/events/attachments.

[8] Pawel Wall: Die Architektur von MacOS X und iOS. July 2007.
Web: ps.informatik.uni-siegen.de/.../.

[9] Wikipedia: Unix. [Online; accessed 15-August-2016]. 2016.
Web: https://en.wikipedia.org/w/index.php?title=Unix&oldid=732116594.

15

